On complete Bergman metrics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Complete Bergman Metrics

(Strictly speaking, one should put ( —1)"2/2 in front of £)'> but this is not essential in the following discussion.) Suppose F is ample in the following sense: (A.l). For every z in M, there exists an/ in F which does not vanish at 2. (A.2). For every holomorphic vector Z at z, there exists an/ in F such that / vanishes at z and Z(f *) ^0, where /=/ * dz1 A ■ ■ • Adzn with respect to a local c...

متن کامل

Canonical coordinates and Bergman metrics

In this paper we will discuss local coordinates canonically corresponding to a Kähler metric. We will also discuss the C ∞ convergence of Bergman metrics following Tian's result on C 2 convergence of Bergman metrics. At the end we present an interesting characterization of ample line bundle that could be useful in arithmetic geometry.

متن کامل

Bergman Metrics and Geodesics in the Space of Kähler Metrics on Toric Varieties

Geodesics on the infinite dimensional symmetric space H of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X are solutions of a homogeneous complex Monge-Ampère equation in X×A, where A ⊂ C is an annulus. They are analogues of 1PS (one-parameter subgroups) on symmetric spaces GC/G. Donaldson, Arezzo-Tian and Phong-Sturm raised the question whether Monge-Ampère geodesics c...

متن کامل

On the holomorphicity of proper harmonic maps between unit balls with the Bergman metrics

Let M and N be two Kähler manifolds with Kähler metrics h = hijdzidzj and g = gαβdwdwβ , respectively. Let u : M → N be a map from M to N . When both M and N are compact, in his proof of the celebrated strong rigidity theorem for compact Kähler manifolds, Siu [S1] proved that any harmonic map u must be holomorphic or antiholomorphic, under the assumption that N has strongly negative curvature i...

متن کامل

Bergman Approximations of Harmonic Maps into the Space of Kähler Metrics on Toric Varieties

We generalize the results of Song-Zelditch on geodesics in spaces of Kähler metrics on toric varieties to harmonic maps of any compact Riemannian manifold with boundary into the space of Kähler metrics on a toric variety. We show that the harmonic map equation can always be solved and that such maps may be approximated in the C topology by harmonic maps into the spaces of Bergman metrics. In pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0141795-0